The fight against doping is a challenging task. Owing to the complexity of the doping phenomenon, simultaneous consideration of physiological, medical, pharmacological, psychological, ethical and systemic factors [1] is required in order to be successful in this endeavour. The need for effective deterrence policy is underscored by the fact that the problem of performance enhancements has spread beyond the elite athlete population. It is well documented that groups other than competitive athletes are at risk of using doping agents, especially steroids [2–5]. Furthermore, medical enhancement of non-sport performance (i.e. quality of life, appearance) appears to be widely acceptable among non-athlete population [6–8].
For this this paper, the term 'doping' is used as the employment of prohibited means to enhance performance, with the intention to gain competitive advantage over the opponent. This definition incorporates the key elements of the previously used definitions, such as artificial stimulation [9] and intention to gain advantage [10], and it is also congruent with the current official definition [11]. Doping may be done by taking prohibited (banned) performance enhancing drugs (PEDs) or using banned methods. Using agents to mask the presence of PEDs, physical manipulation and tampering with the test samples, non-therapeutic gene manipulation resulting in enhanced sport performance and non-cooperation of an athlete are also considered doping. The list of prohibited substances is published by the World Anti-Doping Agency (WADA) and updated yearly [11]. The WADA operates a Therapeutic Use Exemption scheme to allow athletes to take prohibited substances if they have an illness or medical condition that requires medication otherwise on the Prohibited List. Using supplements that are not on the Prohibited List does not constitute doping even if they have a performance enhancing effect (e.g. caffeine, creatine, protein).
Recreational drugs (also called social drugs) are psychoactive drugs used for recreational purposes rather than for work, medical or spiritual purpose, although some recreational drugs (e.g. marijuana, hasish, heroin, amphetamine, ephedrine) are on the List of Prohibited Substances if they the concentration in urine exceeds a specified level and/or were taken during competition.
The doping phenomenon
Despite the fact that doping is not a new phenomenon in sport, enhancing performance through artificial means has only been banned since the 1960s. Doping as a potential danger to the modern Olympic movement was recognized in the '50s and officially acknowledged ten years later by the creation of a list of banned substances. After an agonizing period over athletes' amateur status, performance enhancing drugs have taken over as the major basis for tension and concern within the Olympic movement since 1972 [12]. Researchers seem to agree that doping is unwelcome in sport. However, opinions are divided between doping being a serious deviance one must fight against and doping as undesirable but unavoidable consequence of the institutionalized sport. Notably, the reason behind banning doping initially was the growing concern about athletes' health [13]. Doping only became established as unethical after that point.
Doping incidents infesting high prestige sport events such as the 1998 Tour de France, which was dubbed as the 'Tour of Shame' [14] or the 2004 Athens Olympic Games with a sudden double number of positive cases [15]; and the reaction to them (i.e. establishing national anti-doping agencies) indicate that these events may only be the tip of the iceberg. Whilst the adverse analytical findings (positive results) in tests conducted by the World Anti Doping Agency (WADA) remain low around 2% [16], other occassions have revealed an elevated level of substance use. For example, the presence of some kind of drug or supplement was evidenced in 45% of the athletes who participated and were tested in the Tour de France 2000 [17]. However, the problem seems to be rooted more deeply. The litereature supports the assumption that the consideration of and actual use of doping starts well before the athlete reaches his/her best career years as the prevalence of doping, particularly the use of anabolic steroids, is well documented among adolescents [18–21] and even among pre-adolescent athletes where a steady increase in doping use was observed over the period of four years from age 11 to 15 [22].
The seriousness of the problem is reflected by the recent increase in organised effort to combat doping in sport. The first step toward a globalised effort was the creation of the Anti-Doping Code of the World Anti-Doping Agency (WADA) in 1999 as an organisational level response to the Festina Scandal at the Tour de France [14], parallel to the European Union's (EU) pledged support in the fight against doping. The first report (known as the HARDOP report) was commissioned in 1998 and published in 1999, followed by targeted research projects under the EU's Competitive and Sustainable Growth run under 5th Framework Programme [23]. The globalised effort was recently manifested in the creation of the International Convention Against Doping in Sport by the United Nations Educational, Scientific and Cultural Organization (UNESCO) [24]. The UNESCO convention is the first legally binding international framework setting out the responsibilities of national governments and is currently signed either as ratification, acceptance, approval or accession by 65 countries.
Doping prevention
Historically, the anti-doping movement has been based on detection and prevention, with the initial emphasis on detection. Organisational structures and standard operating procedures have been in place to ensure compliance with the anti-doping regulations [25]. Detection relies on testing, which has been increasingly problematic in high performance sport. Haugen [26] argued persuasively that making testing effective as a deterrence method, either the volume of tests conducted or the sanctions imposed have to be increased significantly, potentially to the level that is practically not feasible. The new technologies in both the development of undetectable methods and the detection of the new methods have led to rapidly escalating costs [27], bearing in mind that tests are currently not even available for all banned substances and methods. If the trend continues, costs of effective testing will soon became a prohibiting factor.
Athletes, as they progess in their sports career, are gradually drawn into the vicious circle of the constant desire to enhance performance. In this process, some athletes may become more susceptible to doping than others, depending on the combination of their personality and the situation. Therefore, both the individual and systemic factors contributing to doping behaviour should be fully investigated in order to underpin effective, targeted anti-doping intervention.
In support of the argument against detection from a psychological perspective, Strelan and Boeckmann [28] provided empirical evidence for the failure of detection based deterrence showing that in a hypothetical situation, athletes first consider their moral beliefs, followed by the fear of negative health consequences and legal sanctions associated with the use performance-enhancing drugs. The effect of the threat of legal sanctions practically diminished when moral beliefs and health concerns were added to the behavioural model, directing policy makers to alternative deterrence methods. Additionally, many speculate that with gene doping on the horizon of competitve sport, detection based regulation will soon be seriously undermined [29–33].
The WADA and national sport governing bodies have added preventive measures to their detection programs. Examples for anti-doping prevention include: WADA's Athlete Outreach Program (launched in 2001) targeting top performing athletes at major sporting events, the Anti-Doping Development Program (started in 2004), which aims to help countries and organizations to set up quality doping control, and the Educational Programme, which is a major tool of the WADA in an attempt to create a doping free culture by providing education to all stakeholders about the dangers of doping and its consequences.
Congruently, the 100% me programme of UK Sport aims to promote positive attitudes and values of those who successfully competed drug-free and to provide accurate and relevant information on anti-doping. The 100% me is an educational program with three distinct but related strands. Outreach programme provides a framework for delivering accurate information and giving advice on anti-doping issues to athletes, athlete support personnel, and parents across the UK via sports events, workshops, training sessions and conferences. The accreditation programme allows interested individuals to gain knowledge in anti-doping and became a '100% me' tutor. The 100% me is also a 'brand' promoting the image of the 'clean athletes' based on values of personal responsibility, choices, fairness and honesty. This image is linked to the Ambassador programme where successful drug-free athletes committed to anti-doping use the 100% me platform to promote drug-free sport among their fellow athlete The Education Model Guidelines (EMG) are in place to help National Governing Bodies (NGBs) develop their own programmes using the 100% me framework.
The UK model is one of the existing anti-doping national programmes. In the US, the U.S. Anti-Doping Agency (USADA) is responsible for similar testing and education programmes, and in place to eliminate conflict of interest of NGBs testing and sanctioning their own athletes. The Australian Sports Anti Doping Authority (ASADA) has also launched a comprehensive the ASADA Education Service Charter in 2007. The Charter places an emphasis on developing athletes' and support personnels' understanding of the physical and psychological risks of doping to ensure that athletes and support personnel are aware of their rights and responsibilities.
Despite the increased anti-doping effort, the relative number of adverse analytical findings has not decreased considerably in the past four years [16]. The appropriateness of education as a deterrent is questionable as it has been shown that doping specific knowledge is higher among doping users than among their non-user counterparts [34]. While prevention, complemented with detection, will be likely to be the main approach to the doping problem, the ultimate goal for sport governing bodies should be creating policies for a truly effective deterrence. Setting detection aside, there is still a fundamental distinction between prevention and deterrence. It is suggested that prevention (and detection) create an environment where the chances of detection and punishment for using doping are uncomfortably high, hence keep athletes away from employing such means, regardless of their motives. On the other hand, value-based deterrence in its true, perhaps Utopian sense, is associated with the creation of an environment where athletes never feel motivated to use illegal means for performance enhancement.
Whether it is a realistic goal or not, effective deterrence is hindered as long as doping behaviour is poorly understood. Before any serious consideration is given to deterrence methods, factors that make an athlete or athlete group more inclined to doping than others must be fully investigated. The WADA has only just started to channel funds to social science doping research to develop better understanding and consequently, more effective deterrence programs. Aiming to add to the body of knowledge on one possible cause of doping behaviour (i.e. individual dispositions and attitudes) is congruent with the current priorities of the WADA Social Science Research Programme [35].
Explaining the doping behaviour
Both the eminent literature and the official global sport organisational stance suggest that athletes' attitudes are responsible for the deviant behaviour of doping [36–38]. Being overly competitive or exceedingly win-orientated is often used as a lay explanation for doping. Although gender, cultural and competitive level differences among athletes have been scrutinized since the late '80s [39, 40] the relationship between these factors and doping behaviour has not been empirically tested, except in one project. In the study by Lucidi et al. [41] the classic Theory of Planned Behaviour (TPB) model [42] provided a theoretical framework for a study among Italian adolescents, where attitude was found to be the strongest predictor for behavioural intention. The TPB model held across different levels of sport involvement and gender.
Recently, alternative theoretical models of doping have been developed [43, 44] attempting to explain the complex nature of doping. The models are based on existing general models from either health science or criminology but their application to the doping situation has not been empirically validated. The first among the few, Donovan and colleagues [43] used the Health Belief Model to develop a theoretical drug control model. Although it was not explicitly stated, the model also incorporates some kind of economic rationality when it considers the balance between deterrence and incentives and availability and affordability of performance enhancing substances. According to the model, athletes' doping behaviour is the ultimate function of this cost/benefit ratio, personality and morality, legitimacy of sanctioning organisation, social context (reference group) and attitude toward doping.
The Drugs in Sport Deterrence Model by Strelan and Boeckmann [44] also considered costs and benefits but used these concepts in a broader sense. Their model is based on Deterrence Theory used in criminology [45] and costs and benefits include material and social consequences, as well as individual effects, such as health concerns, guilt or even satisfaction from sport achievement. Situational factors (i.e. prevalence perception, professional status, type of drug, experience with testing, etc.) were also thought to have an effect on the final decision regarding doping use.
The common element of all three models [41, 43, 44] is that subjective norms play a seemingly important role in doping behaviour. As it is evidenced in a recent, WADA Social Science research funded extensive literature review [46], published research into doping attitude is dominantly descriptive and with a few exceptions, it falls short on theoretical underpinning or on establishing causal relationships between attitudes and behaviour. The major achievement of the existing doping models is that they draw attention to the complexity of the doping problem. Many of them touched upon attitudes and many other perhaps important factors contribution to doping but their claims have not been supported with empirical evidence.
Therefore, the intention of this study was to to fill this gap and to explore the relationship between doping behaviour and sport achievement orientation by expanding the traditional one-step attitude – behaviour models (e.g. Theory of Reasoned Action, Theory of Planned Behaviour) and collecting and analyzing data regarding athletes' sport achievement orientation, doping orientation and behaviour. The traditional one-step behavioural models [42, 47] assume that the behaviour in question is the ultimate end and considers antecedents, such as beliefs, attitudes, subjective norms and perceived behavioural control regarding the particular behaviour. Research into athletes' motivation and reasons for doping use reveal an important factor that has been prominent in game theory models [26] but overlooked in the existing doping behaviour models [43, 44]: that doping behaviour is not the ultimate end but rather a means to an end [10, 48, 49]. It can be argued whether the ultimate end is winning or achieving a specific sport related goal (i.e. breaking a record); and it may vary from athlete to athlete. Nevertheless, if doping is a tool to achieve an end-goal, then models of doping should include attitudes or orientations toward the specific target end, in addition to attitudes toward the 'tool' itself.